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Work on this effort divided up into three phases. The first phase, which spanned the first three 
years of the effort, focused on "Research on Soar". The second phase, which spanned the next 
2.5 years of the effort, focused on "Learning to Use Devices" in the context of Soar. The third 
phase, which spanned the last two years of the effort, focused on "Induction as Knowledge In- 
tegration". These three phases will be described in brief in the following three sections. 

1. Research on Soar 
The first phase covered research on intelligent behavior in the context of the Soar architecture 

(Laird, Newell, & Rosenbloom, 1987; Rosenbloom et al, 1991; Rosenbloom, Laird, & Newell, 
1993). Two threads focused on learning - one on the acquisition of new knowledge (knowledge 
level learning) and the other on the reformulation of existing knowledge so as to improve perfor- 
mance ( s y d d  level learning). The third thread focused on analogyhse-based-reasoning. The 
fourth and final thread focused on the relationship between Soar and Connectionism. 

1.1, Knowledge Level Learning 
Although Soar's learning mechanism was called chunking based on a related psychological 

notion of the same name (Miller, 1956), it gradually became apparent that Soar's chunking 
mechanism had a great deal of difficulty producing the kind of declarative learning - that is, the 
acquisition of new knowledge from the outside - that had become so central to the concept in 
psychology. Instead, Soar's chunking appeared to be limited to pure speed up learning. Prior to 
this effort we had begun to lay out how Soar's chunking could in fact acquire new knowledge. 
As part of this effort, this capability was better understood, implemented in a general fashion, 
and extended to handle simple fonns of inductive learning (Rosenbloom & Aasman, 1990; 
Rosenbloom, Newell, & Laird, 1991). It also led to the development of a new polynomially 
bounded generalization algorithm for version spaces (Smith & Rosenbloom, 1990), and was one 
of the key inputs in developing the ideas that led to the third phase of this effort (Section 3). 

1.2. Symbol Level Learning 
The focus of this effort was on understanding the problem of expensive chunks and on inves- 

tigating the space of possible solutions to the problem. Chunking is a learning mechanism that 
acquires new rules from traces of system problem solving. These new rules are (usually) in- 
tended to speed up the system via a form of caching, in which extended problem solving is 
replaced by the match and firing of previously learned rules. Unfortunately, the match process 
for new rules can be exponential (in the number of rule conditions) in the worst case, so that 
sometimes the acquisition of new rules actually slows down the system rather than speeding it 
up. This is the phenomenon of expensive chunks (Tambe, Newell, & Rosenbloom, 1990), which 
is a form of the utility problem in explanation based learning (Minton, 1988). 

The identification of the cause of expensive chunks as being the presence of multi-attributes - 
attributes of objects that can simultaneously take on more than one value - led to the identifica- 
tion of a restriction on the system's expressiveness that can provide a linear-time guarantee for 
the match of individual rules (Tambe & Rosenbloom, 1988; Tambe & Rosenbloom, 1989; 
Tambe, Newell, & Rosenbloom, 1990). This unique-attribute restriction ensures that every at- 
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tribute of every object has at most one value at a time. It eliminates slowdowns, but at the cost 
of making it more difficult to express certain kinds of structures - basically, undifferentiated 
sets. 

Follow-on work further investigated the space of possible solutions to the problem of expen- 
sive chunks, with an eye out for alternatives that traded-off less in the way of expressibility. 
First, four dimensions were identified in terns of local syntactic constraints on working memory 
- number of attributes per object, number of values per attribute, number of attributes per value, 
and number of objects per attribute - whose cross-product defines a space of possible alter- 
natives. Within this space, it was possible to prove that unique-attributes was the best alternative 
(Tambe & Rosenbloom, 1990; Tambe & Rosenbloom, 1994). 

Subsequently a second space of alternatives was discovered in which alternatives are defined 
according to different ways of bounding the search performed during the match process. The 
one alternative that was investigated in some depth was instantiationless match, in which instead 
of keeping track of which bindings of which variables go together, it is only possible to keep 
track of each variables set of bindings separately (Tambe & Rosenbloom, 1994). Instantiation- 
less match reduces the cost of learned rules by eliminating the cross-product effects that occur 
when it is necessary to keep track of which elements of each variable’s set of bindings go 
together. 

While instantiationless match has not been turned into as practical an approach as has unique- 
attributes, it did succeed in creating an important tie between production match and constraint 
satisfaction. It also has led to a radically new match algorithm, called collection match (Acharya 
& Tambe, 1993). Although collection match does not provide the kinds of complexity bounds 
needed to eliminate expensive chunks - and was not investigated as part of this effort - it does 
appear to provide a highly efficient and practical match algorithm for the standard production 
match problem. In particular, it scales particularly well as the size of working memory grows. 

1.3. Combining Rule-Based and Case-Based Reasoning 
This effort started with a focus on advice taking and analogical reasoning within Soar, but then 

evolved into a study outside of Soar of the combination of rulebased reasoning (RBR) and case- 
based reasoning (CBR) in the domain of proper name pronunciation. The basic idea is to use 
general - but only approximately correct - rules to suggest alternatives, and then to search a 
case base for compelling exceptions to the rules (Golding, 1991; Golding & Rosenbloom, 1991; 
Golding & Rosenbloom, 1996). This allows these two distinct sources of knowledge to be used 
synergistically to improve overall accuracy, and in so doing allows a lightly engineered 
academic system for Proper Name Pronunciation to be competitive with existing heavily en- 
gineered commercial systems (Golding & Rosenbloom, 1993). This basic architecture should be 
usable beyond the domain of Proper Name Pronunciation, whenever reasonably accurate and 
efficient - but not perfect - rules are available, along with a set of relevant cases and a 
similarity metric (for evaluating case closeness). 

Other innovations in the work include using the ruIe base in service of case indexing 
(prediction-based indexing) and adaptation (rational reconstruction), so that improvements in 
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the rules lead to faster and better CBR the use of positive analogies to help choose between 
plausible rule-proposed alternatives that are not eliminated by negative analogies (Le., by excep- 
tions); the identification of the phenomenon of analogical decline, in which fewer good 
analogies are found for rarer names; a method for automatically extending an incomplete domain 
theory; a method for evaluating proposed analogies via their accuracy over the entire case base; 
and an automated threshold setting procedure. 

Two of the papers on this work won prizes. Golding & Rosenbloom (1993) won the the 
American Voice Input/Output Society Gary K. Poock Editor’s Award for the Outstanding Paper 
in the AVZOS Journal during 1993. Golding & Rosenbloom (1991) won the award for the best 
written paper at the Ninth National Conference on Artificial Intelligence. 

1.4. Connectionism, Goal-Oriented Behavior, and Soar 
This effort performed a functional analysis of goal-oriented behavior; used it to analyze both 

Soar and Connectionism and to create a mapping between the two; and outlined a strategy for 
creating a hybrid Connectionist Soar (Rosenbloom, 1989). The most interesting outcome of this 
investigation was the realization that Soar’s approach to memory access - which is based on 
iterations of parallel rule firing until quiescence - maps quite closely onto the memory access 
approach typically used in connectionist networks. There are of course differences in the details, 
but this mapping lets us consider a Soar-like system that replaces Soar’s memory structure with a 
connectionist net, yet still supports Soar’s higher level goal-oriented capabilities. This idea was 
later followed up outside of this effort in a partial connectionist reimplementation of Soar, called 
Neuro-Soar (Cho, Rosenbloom, & Dolan, 1991). 

2. Learning to Use Devices 
When presented with a new device to use - such as a VCR, a data logger, a network con- 

figurer, or an experimental package - people are able to learn to use the device based on a 
combination of knowledge sources. Typical knowledge sources might be manuals, experimen- 
tation with the device, knowledge of related devices, and verbal instructions. The effort in this 
phase focused on providing the same kind of capability to automated systems, so that when as- 
sociated devices are upgraded or changed, the system can learn how to use the new devices from 
its available sources of knowledge, rather than requiring reprogramming. 

One outcome of this effort was the development of a system that can start out with no 
knowledge about a video cassette recorder (VCR) and learn to play a tape on the VCR based on a 
single knowledge source - analogy with an audio cassette deck (ACD). The system is con- 
structed in Soar as a set of five problem spaces, where each problem space corresponds to a 
model of a device, or an interface, or a domain, or some other coherent body of knowledge. The 
particular problem spaces used here are: the top-space, which interacts with the world; two 
domain spaces that characterize classes of tasks in the world (listen-to-music and watch-a- 
movie); a device model for the ACD; and a communication model that knows which buttons to 
press to elicit a desired function from the ACD. The top space begins with only primitive motor 
commands and perceptual input. If it does not know what to do, it reaches an impasse, and uses 
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another problem space (such as watch-a-movie) in acquiring a task operator. This generic 
process of using other spaces to generate information usable in performing the task continues 
until the task has been refined enough that motor commands can be executed that will ac- 
complish it. 

fn addition to learning from an analogical model, we interfaced a version of %Soar - the 
Soar-based natural language understanding capability being developed at CMU (Lehman, Lewis, 
& Newell, 1991) - to the system that learns to play tapes on the VCR, and extended it to 
demonstrate the acquisition of a fragment of relevant VCR knowledge from manual-like natural- 
language input. In particular, it processed the sentence "To play a tape, press the PLAY button" 
to yield part of the VCR device knowledge. There is admittedly still a long way to go here, but 
there are some very interesting opportunities and issues that it raises, including how to use the 
system's models (of devices and domains) as much of the semantics of the natural-language 
comprehension system, and how to use other knowledge sources (such as models of similar 
devices) to help in understanding and disambiguating the manual.l 

In addition to the VCR domain, a system was also developed that could start out with no 
knowledge of a text editor, and learn to edit simple strings based on two knowledge sources: 
analogy with a typewriter, and observation of the effects of proposed actions on the text editor. 
This system uses two knowledge sources: a model of a related device and experimentation with, 
and observation of, the actual device. 

The key intellectual issue that showed up in constructing these systems (outside of the the NL 
related issues) was how to perform the coupling between two arbitrary problem spaces that are 
used within a goal-subgoal relationship - even when the coupling hadn't been anticipated; that 
is, how to encode an impasse in one space into a problem to be solved in the other space, and 
how to encode the results of the solution in the subspace back into useful information in the 
parent space. To date in Soar this issue has always been addressed by hardcoding translation 
rules that create initial states in new problem spaces and return results to parent spaces. 
However, such an approach is inadequate when the range of impasses that can occur, and the 
range of spaces that can potentially be used for them, is quite large. 

This problem can be viewed as a generalization of the analogy problem. In analogy, the two 
spaces are both device models, but about different devices (such as the VCR and ACD). 
Whereas here, in addition to this normal analogical relationship, there may be a need to map 
from a model of the domain to a model of the device, or between manual knowledge and a 
device space. 

We ended up casting this problem in a comprehension-based framework. When an impasse 
occurs, and a problem space is selected for it in a subgoal, the subgoal space first comprehends 
the impassed space in its own terms - just as if, for example, it were an utterance in natural 
language - to determine how to formulate the problem in terms of similar tasks that it under- 

'This approach bears a close relationship to a proposal by Goel and Eiselt on model-bused text interpretation and 
and knowledge acquisition (Goel & Eiselt, 199 1). 
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stands. This corresponds to a similar problem in the selected space. The similar problem is 
solved, and the solution returned to the parent space. The result is returned by proposing a com- 
prehension operator for the parent-space that is to comprehend the solution. When the solution is 
comprehended, the parent space should have enough information to resolve the impasse. This 
comprehension process should have much in common structurally with other comprehension 
processes, such as natural language (NL) comprehension, but the knowledge used by it is likely 
to be different. 

This phase of the effort was terminated at this point. Some interesting work had been done, 
and interesting issues and firameworks had been identified. However, it was still a long way 
from the kinds of results needed for the PhD thesis of which it was to be the basis. The basic 
problem was two-fold (1) using in a general manner any one of the knowledge sources upon 
which learning was to be based was clearly (at least at this point) a massive undertaking; and (2) 
sufficient ideas for how to convert the comprehension-based framework for mapping into some 
form of general theory and implementation were lacking. As a consequence, we switched focus 
to the more well-defined topic of the third phase: induction as knowledge integration. 

3. Induction as Knowledge Integration 
The third phase arose out of the earlier work on knowledge level learning (Section 1.1); out of 

an earlier attempt to generate a general framework for the acquisition of new knowledge 
(Rosenbloom, 1988); and from analysis of a range of induction algorithms, in particular 
knowledge-intensive induction algorithms such as IVSM (Hirsh, 1990) and GRENDEL (Cohen, 
1992). The goal was to develop a general means for integrating knowledge into induction. The 
key assumption motivating this was that the best way to improve both the accuracy and ef- 
ficiency of induction algorithms is to use whatever knowledge might be available and relevant. 
Only once the knowledge is exhausted, does it make sense to try to tune the other aspects of the 
induction algorithm. In contrast, most of machine learning is focused on tuning induction al- 
gorithms that use examples as their only form of knowledge. The few systems that can use any 
knowledge beyond the examples, can generally use only a few specific forms of knowledge, and 
these in only a small number of predetermined ways. 

Our investigations during this phase led us through three different frameworks for the integra- 
tion of knowledge into induction. The Tran#omtional Framework analyzed induction al- 
gorithms as black boxes with input ports for knowledge (Rosenbloom et al, 1993). Additional 
knowledge was integrated in by either reformulating the existing set of ports or by developing 
preprocessors that that translated the new knowledge into forms understandable by the existing 
ports; for example, converting constraints on the concept into pseudo-examples. The Problem 
Space Framework analyzes induction as search over a space of hypotheses (Rosenbloom et al, 
1993). Although this is not particularly a new concept (Simon & Lea, 1974; Mitchell, 1979; 
Rosenbloom, 1988), the key new idea was to understand the use of knowledge in induction in 
terms of how it specifies, constrains, and orders the elements of this search space. The 
Constraint Framework is much like the Problem Space Framework; however, instead of focus- 
ing on search, it focuses on the integration of constraints and preferences over sets of hypotheses. 
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The constraint framework was developed sufficiently to form the basis for a PhD Thesis 
(Smith, 1995), with additional publications based on it also in progress. Here's the abstract of 
the thesis: 

Accuracy and efficiency are the two main evaluation criteria for induction algorithms. One of 
the most powerful ways to improve performance along these dimensions is by integrating ad- 
ditional knowledge into the induction process. However, integrating knowledge that differs sig- 
nificantly from the knowledge already used by the algorithm usually requires rewriting the 
algorithm. 

This dissertation presents KII, a Knowledge Integration framework for Induction, that provides 
a straightforward method for integrating knowledge into induction, and provides new insights 
into the effects of knowledge on the accuracy and complexity of induction. The idea behind Kn 
is to express uZZ knowledge uniformly as constraints and preferences on hypotheses. 
Knowledge is integrated by conjoining constraints and disjoining preferences. A hypothesis is 
induced from the integrated knowledge by finding a hypothesis consistent with all of the con- 
straints and maximally preferred by the preferences. 

Theoretically, just about any knowledge can be expressed in this manner. In practice, the con- 
straint and preference languages determine both the knowledge that can be expressed and the 
complexity of identifying a consistent hypothesis. RS-KII, an instantiation of KII based on a 
very expressive set representation, is described. RS-KII can utilize the knowledge of at least 
two disparate induction algorithms - AQ-11 and CEA ("version spaces") - in addition to 
knowledge neither algorithm can utilize. It seems likely that RS-KTI can utilize knowledge 
from other induction algorithms, as well as novel kinds of knowledge, but this is left for future 
work. RS-KII's complexity is comparable to these algorithms when using only the knowledge 
of a given algorithm, and in some cases RS-KII's complexity is dramatically superior. KII also 
provides new insights into the effects of knowledge on induction that are used to derive classes 
of knowledge for which induction is not computable. 
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